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Results from a recent quantum Monte Carlo �QMC� study �P. B. Chakraborty et al., Phys. Rev. B 70,
144411 �2004�� of a model of the LiHoF4 Ising magnetic material in an external transverse magnetic field, Bx,
show a discrepancy with experimental results, even for small Bx where quantum fluctuations are small. This
discrepancy persists asymptotically close to the classical ferromagnet to paramagnet phase transition. In this
paper, we numerically reinvestigate the temperature T versus transverse-field phase diagram of LiHoF4 in the
regime of weak Bx. In this regime, starting from an effective low-energy spin-1/2 description of LiHoF4, we
apply a cumulant expansion to derive an effective temperature-dependent classical Hamiltonian that incorpo-
rates perturbatively the small quantum fluctuations in the vicinity of the classical phase transition at Bx=0. Via
this effective classical Hamiltonian, we study the Bx-T phase diagram via classical Monte Carlo simulations. In
particular, we investigate the influence on the phase diagram of various effects that may be at the source of the
discrepancy between the previous QMC results and the experimental ones. In particular, we consider two
different ways of handling the long-range dipole-dipole interactions and explore how the Bx-T phase diagram
is modified when using different microscopic crystal-field Hamiltonians. The main conclusion of our work is
that we fully reproduce the previous QMC results at small Bx. Unfortunately, none of the modifications to the
microscopic Hamiltonian that we explore are able to provide a Bx-T phase diagram compatible with the
experiments in the quasiclassical small Bx regime.

DOI: 10.1103/PhysRevB.78.184408 PACS number�s�: 75.10.Jm, 75.40.Mg, 75.30.Kz

I. INTRODUCTION

A. Transverse-field Ising model

Phase transitions from order to disorder are most com-
monly driven by thermal fluctuations. However, near abso-
lute zero temperature, a system can, via quantum fluctuations
associated with the Heisenberg uncertainty principle, un-
dergo a quantum phase transition �QPT�.1,2 The transverse-
field Ising model �TFIM� is perhaps the simplest model that
exhibits a QPT.1,3,4 This model was first proposed by de
Gennes to describe proton tunneling in ferroelectric
systems.5 The Hamiltonian of the TFIM is given by

HTFIM = −
1

2�
i,j

Jij�i
z� j

z − ��
i

�i
x, �1�

where �i
� ��=x ,y ,z� are the Pauli matrices. Since �i

x and �i
z

do not commute, a nonzero field, �, transverse to the Ising
direction, causes quantum tunneling between the spin-up and
spin-down eigenstates of �i

z, hence causing quantum spin
fluctuations. These fluctuations decrease the critical tempera-
ture Tc at which the spins develop long-range order. In the
simplest scenario, where Jij �0, the ordered phase is
ferromagnetic.3,4 At a critical field �c, Tc vanishes, and a
quantum phase transition between a long-range-ordered fer-
romagnetic phase and a quantum paramagnet �PM� state oc-
curs. The HTFIM can be generalized by considering Jij as
quenched �frozen� random interactions. Competing ferro-
magnetic Jij �0 and antiferromagnetic Jij �0 couplings gen-
erate random frustration. For a three-dimensional case, the
system freezes into an �Ising� spin-glass state at a critical
temperature Tg.6,7 Similar to the previous example, Tg���

decreases as � is increased until, at �=�c, a quantum phase
transition between a spin-glass phase and a PM state occurs.
Extensive numerical studies have found the QPT between a
quantum paramagnet and a spin-glass phase8–10 to be quite
interesting due to the occurrence of Griffiths-McCoy singu-
larities �GMSs�.11,12

B. LiHoxY1−xF4

The magnetic insulator LiHoF4, with a magnetic field Bx
applied perpendicular to the Ising z direction of the Ho3+

magnetic moments, is a well-known example of a physical
realization of the transverse-field Ising model.13–16 The pre-
dominant Jij interactions between the Ho3+ ions in LiHoF4
are long-range magnetostatic dipole-dipole interactions
which decay as 1 /rij

3 , where rij is the distance between the i
and j ions. The sign of Jij depends on the position of j with
respect to i. The existence of a large crystal-field anisotropy
on the magnetic Ho3+ ions17 causes the system to behave as
a classical Ising system with dipolar interactions for Bx=0.
The reason is that the single-ion crystal-field ground state is
an Ising doublet, meaning that the matrix elements of the
raising and lowering angular momentum operators J� vanish
within the space spanned by the two states of the doublet.
The Ising direction is parallel to the c axis of the body-
centered-tetragonal structure of LiHoF4. For Bx=0, the sys-
tem is well described by a low-energy effective spin-1/2 clas-
sical dipolar Ising model.18–20 Because the energy gap
between the ground doublet and the first excited singlet is
fairly large compared to the Jij couplings, there is little
quantum-mechanical admixing between the ground doublet
and the excited state induced by the interactions.18 However,
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a nonzero Bx admixes the ground doublet with the excited
singlet and splits the ground doublet. It is this energy split-
ting which corresponds to the effective transverse field � in
the TFIM description of LiHoF4 in nonzero Bx.

13,19,20

The Ho3+ ions may be substituted �i.e., randomly diluted�
by nonmagnetic yttrium �Y3+� ions, with very little lattice
distortion. This allows one to study the effects of disorder on
LiHoxY1−xF4 as an example of a diluted Ising model. De-
pending on the concentration x of magnetic ions, the low-
temperature phase is either ferromagnetic13,21 or spin
glass.22–26 Interestingly, paradoxical phenomena are observed
when a transverse magnetic field is applied to LiHoxY1−xF4,
with x�1. In the ferromagnetic regime, �0.25�x�1.0�,
when Bx=0, a mean-field behavior Tc�x��x for the paramag-
net to ferromagnet temperature transition is observed. How-
ever, in nonzero Bx, with increasing Bx, Tc�Bx� decreases
faster than mean-field theory predicts.27 For Bx=0, when
LiHoxY1−xF4 is diluted below x�0.25, a conventional spin-
glass transition is observed.14,23–26 A signature of a spin-glass
transition is the divergence of the nonlinear magnetic suscep-
tibility at Tg.28 However, surprisingly, �3�T� in LiHoxY1−xF4
becomes less singular as Bx is increased from Bx=0, suggest-
ing that no quantum phase transition between a PM and a
spin-glass �SG� state exists as T→0.14,29 Recently, theoreti-
cal studies19,30–32 have suggested that for dipole-coupled
Ho3+ in diluted LiHoxY1−xF4, nonzero Bx generates longitu-
dinal �along the Ising ẑ direction� random fields that couple
to the magnetic moment. These random fields �i� lead to a
faster decrease of Tc�Bx� in the ferromagnetic regime and �ii�
destroy the paramagnet to spin glass transition in
LiHoxY1−xF4 samples that otherwise show a SG transition
when Bx=0.23–26 The influence of these induced random
fields on the behavior of the linear magnetic susceptibility �
in nonzero Bx has recently been investigated for ferromag-
netic LiHoxY1−xF4 samples.21 When LiHoxY1−xF4 is highly
diluted �e.g., LiHo0.045Y0.955F4�, a very interesting and pecu-
liar behavior is observed. ac susceptibility data show that the
distribution of relaxation times narrows upon cooling below
300 mK.22,26,33,34 This behavior is quite different from that
observed in conventional spin glasses, where the distribution
of relaxation times broadens upon approaching a spin-glass
transition at Tg�0.6,28 This so-called antiglass behavior has
been interpreted as evidence that the spin-glass transition in
LiHoxY1−xF4 disappears at some nonzero xc�0.23,24 This is
in contrast with theoretical arguments,35 which reason that
because of the long-ranged 1 /r3 nature of dipolar interac-
tions, classical dipolar Ising spin glasses should have Tg�x�
�0 for all x�0. However, recent numerical36–38 and experi-
mental works23,24 claimed that a finite temperature paramag-
netic to spin glass phase transition may not occur for x as
large as xc�0.2. The experimental26,39 and numerical40 situ-
ations remain unsettled and in a rapid state of change.

C. LiHoF4 as a TFIM

In addition to the phenomena arising in the diluted regime
of LiHoxY1−xF4, the x=1 regime also turns out to be inter-
esting. There still exist problems for pure LiHoF4 which re-
quire the properties of this system in nonzero Bx to be rein-

vestigated more thoroughly. The properties of LiHoF4 in a
transverse external magnetic field have only recently been
studied in quantitative detail starting from a truly micro-
scopic spin Hamiltonian.20 In Ref. 20, which reported results
from a quantum Monte Carlo �QMC� study using the sto-
chastic series-expansion �SSE� technique,41 general qualita-
tive agreement between the microscopic model and experi-
mental data13 was obtained. However, as illustrated in Fig. 1,
there is significant quantitative discrepancy between the
Monte Carlo results of Ref. 20 and the experimental data of
Ref. 13. In particular, the discrepancy between experimental
results and QMC results persists asymptotically close to the
classical ferromagnetic to paramagnetic phase transition,
where Bx /Tc and quantum fluctuations are perturbatively
small. For very low temperatures and high Bx, it is crucial to
consider the hyperfine interaction in order to explain the be-
havior of the phase diagram close to the quantum critical
point.13,20,42 For very small Bx /Tc, the numerical results
shown in the inset of Fig. 1 indicate that the effect of the
hyperfine interaction is not important close to the classical
transition at Tc�1.53 K.

It was suggested in Ref. 20 that the discrepancy between
simulation and experiment, close to the classical transition,
may be related to some uncertainty in the crystal-field pa-
rameters �CFPs� used in the crystal-field Hamiltonian which
enters in the TFIM description of LiHoF4 and which is simu-
lated via QMC. Indeed, a number of CFP sets obtained from
different experimental works, such as susceptibility
measurements,17 neutron scattering,16 and electron-
paramagnetic-resonance experiments,43 provide somewhat
different values for the CFPs. The important point here is
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FIG. 1. �Color online� The discrepancy between the experimen-
tal �Ref. 13� phase diagram of LiHoF4 and QMC simulations using
stochastic series expansion for small Bx from Ref. 20. The whole
phase diagram is shown in the inset. At low temperature and high
Bx, neglecting the large hyperfine interaction A generates a large
discrepancy between the experimental quantum critical point and
the one obtained from simulation. However, at low Bx and close to
the classical critical point, the hyperfine interaction is not a quanti-
tatively important parameter. Other possibilities for the origin of
this discrepancy have to be investigated in this regime.
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that different CFPs would lead to different field
�Bx�–dependent effective coupling parameters in the TFIM
description of LiHoF4, which would result in different Bx vs
Tc phase diagrams.

Yet, there are other factors of strictly computational na-
ture which may be at the origin of the discrepancy illustrated
in Fig. 1. In particular, calculations that involve long-range
dipolar interactions are notoriously tricky to handle. Because
of the long-range nature and angular dependence of dipolar
interactions, the dipolar sum U�i�=1 /N� j�1−3 cos2 	ij� /rij

3

is conditionally convergent.44–46 That is, the value of the sum
depends on the shape of the external boundary of the system
studied. Here, rij is the distance between sites i and j and 	ij
is the angle between rij and the global Ising ẑ spin axis. For
example, the conditional convergence of dipolar sums was
studied by Luttinger and Tisza,46 who performed the dipolar
sums for a number of spin structures for systems with differ-
ent external boundary shapes. For example, they considered
an infinitely large system of dipoles on a body-centered-
cubic lattice. They found that when the external boundary is
spherical, the ground state is antiferromagnetic, while it is
ferromagnetic for a needle-shaped sample. Later, Griffiths47

rigorously proved that for zero external field, the free energy
for a dipolar lattice system has to be independent of the
sample shape in the thermodynamic limit. The immediate
consequence of Griffiths’ theorem is that in zero external
field, the net magnetization of the sample has to be zero.
Otherwise, the field originating from the magnetic moments
sitting on the boundary of the sample would couple to the
dipolar moments of the sample, making the free energy
shape dependent. Therefore, according to Griffiths’
theorem,47 domains are formed in the sample such that in the
thermodynamic limit, the total magnetization is zero. Grif-
fiths’ theorem contradicts the results of Luttinger and Tisza.46

The reason is that Luttinger and Tisza assumed a uniform
ground-state spin configuration and ignored the possibility of
domain formation. This discussion emphasizes the complica-
tion of studying systems with dipolar interactions and the
caution which should be taken while dealing with such sys-
tems �e.g., the choice of the boundary geometry, boundary
conditions, and the shape of the domain walls�. Finite-size
effects are another issue that needs to be handled quite care-
fully in systems where there are long-range interactions be-
tween ions.

There are different ways to incorporate dipolar interac-
tions in a computationally efficient way. Reference 20 imple-
mented the reaction-field method,48 which truncates the sum
of the long-range interactions at the boundary of a sphere.
The dipoles outside the sphere are treated in a mean-field
fashion. Due to the semi-mean-field nature of this method,
the reaction-field method overestimates the critical tempera-
ture. In the presence of quantum fluctuations, this overesti-
mation is still at play and can possibly influence the Bx-Tc
phase diagram as well. The Ewald summation method44,49–53

is another method used to treat the long-range dipolar inter-
actions. In the Ewald summation method, a specified volume
is periodically replicated. Then, by summing instead two
convergent series effectively representing the dipolar interac-
tions between magnetic moments i and j and all the periodi-
cally repeated images of j, an effective dipole-dipole inter-

action between two arbitrary magnetic moments i and j
within the finite-size sample to be numerically simulated is
derived. From a general perspective, it would appear quite
worthwhile to investigate the applicability and usefulness of
the Ewald summation method to determine the low Bx vs Tc
phase diagram of LiHoF4. Indeed, the Ewald summation
method, unlike the reaction-field one, is less prone to mean-
field overestimations and can be used as another methodol-
ogy to probe the LiHoF4 problem via simulations.37,38

Another factor whose influence on the Bx-T phase dia-
gram should be studied is the nearest-neighbor exchange in-
teraction Jex in LiHoF4. The strength of Jex, which is ex-
pected to be comparable to the dipolar interactions for a 4f
ion, such as Ho3+, is unknown. The strength can be deter-
mined such that the classical critical temperature matches the
experimental value for Bx=0. The estimated value of Jex is
highly sensitive to the method used to handle the external
boundaries and finite-size effects in simulations, both of
which have significant effects when the reaction-field �RF�
method is used, as already found in Ref. 20.

D. Scope of the paper

The above discussion should make it clear that there are
two rather distinct avenues to pursue in order to seek an
explanation for the discrepancy illustrated in Fig. 1 between
the experimental13 Bx vs Tc phase diagram of LiHoF4 and the
one obtained via QMC.20 One avenue is that the current mi-
croscopic model is incomplete. As mentioned above and sug-
gested in Ref. 20, one possible source for this incomplete-
ness may be an inaccurate set of CFPs. Another possible
source is that interactions other than long-range magnetic
dipolar interactions and nearest-neighbor exchange may be at
play.54 Examples of other interactions include higher-order
multipole interactions and virtual-phonon exchange.54 The
other avenue is related to the ensemble of computational
pitfalls and ensuing numerical errors that may arise when
one deals with long-range dipolar interactions through simu-
lations. Therefore, before one delves into exploring a more
complex microscopic Hamiltonian, there is a clear need to
reinvestigate the “simpler” problem that solely considers
long-range dipole-dipole interactions and nearest-neighbor
exchange.

In this work we aim to scrutinize the individual role of
each of the computational issues as a potential culprit for the
discrepancy observed in Fig. 1. Because QMC and experi-
ment do not match at Bx /Tc→0, we have developed a tool
that allows us to achieve the goal in an efficient and compu-
tationally simple way. Since the discrepancy appears at low
Bx near the classical Tc, where quantum fluctuations within a
classical are perturbatively small, we can expand the parti-
tion function Z in terms of the transverse magnetic field Bx
and recast the partition function as a sum over strictly clas-
sical states by using an effective classical Hamiltonian
Heff�T�. In Heff�T�, the quantum effects are incorporated per-
turbatively, giving us the ability to calculate all thermody-
namical quantities in the presence of small quantum fluctua-
tions within a classical Monte Carlo method. Therefore, a
classical Monte Carlo simulations can be performed using
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Heff�T� in a very simple way, without the need to perform
complicated QMC �Refs. 20 and 41� simulations when con-
sidering a regime with weak quantum fluctuations.55 There-
fore, we can focus on the region close to the classical tran-
sition and investigate the different possible origins of the
discrepancy in detail.

In summary, �i� the complexity of the QMC SSE method,
�ii� the problematic conditional convergence of dipolar lat-
tice sums, �iii� the question of controlled finite-size effects
and its role on a consistent determination of the nearest-
neighbor exchange Jex, and �iv� the possible sensitivity of the
Tc�Bx� dependence on the choice of CFPs altogether warrant
a new numerical investigation of the Tc�Bx� phase diagram in
the LiHoF4 transverse-field Ising material. Below, we will
show that either fortunately or unfortunately, depending on
one’s disposition, the factors proposed in Sec. I C as the
possible origins of the discrepancy between experiment and
simulation �see Fig. 1� are apparently not the issue. There-
fore, the origin of the discrepancy remains unexplained.
However, the perturbative cumulant Monte Carlo tool that
we have devised could be used effectively to search for the
cause of discrepancy. Without it, the discovery of the irrel-
evance of the above factors through classical Monte Carlo
simulation would have been a more CPU time consuming
burden. Ultimately, the same tool can also be used to explore
the role of the small Bx when x�0.21,30–32 Indeed, construct-
ing the whole x-Tc�Bx� phase diagram in the “small Bx” in
the vicinity of the classical x-Tc phase diagram by perform-
ing solely classical Monte Carlo was an original key motiva-
tion for the development of the method presented in this
paper.

The rest of the paper is organized as follows: In Sec. II,
we review the crystal structure and the physical properties of
LiHoF4 in a transverse field Bx and the effect of the choice of
crystal-field potential on the magnetic low-energy states. In
Sec. III, we introduce the full microscopic Hamiltonian of
LiHoF4. We discuss how for low energies, an effective spin-
1/2 Hamiltonian for LiHoF4 can be constructed, and we ex-
plain how one can picture LiHoF4 in nonzero Bx as a dipolar
TFIM. We then discuss how a semiclassical effective Hamil-
tonian is derived from the TFIM Hamiltonian by incorporat-
ing the transverse-field term perturbatively via a cumulant
expansion. In Sec. IV, we employ the semiclassical effective
Hamiltonian obtained in Sec. III in classical Monte Carlo
simulations for small Bx. We discuss the results obtained us-
ing either the reaction-field or the Ewald summation method.
We discuss how the nearest-neighbor exchange Jex is esti-
mated and we investigate the sensitivity of the determined
Jex value upon the choice of the numerical method. Finally,
we compare the Bx-Tc phase diagrams originating from two
different sets of crystal-field parameters. Section V summa-
rizes our results.

II. STRUCTURE AND CRYSTAL FIELD

The magnetic material LiHoF4 undergoes a second-order
phase transition from a paramagnetic to a ferromagnetic state
at a critical temperature of 1.53 K.14,17 The critical tempera-
ture can be reduced by applying a magnetic field Bx trans-

verse to the Ising easy-axis direction. The magnetic field
induces quantum fluctuations such that beyond a critical field
of Bx

c�4.9 T, the system displays a quantum phase transi-
tion from a ferromagnetic state to a quantum paramagnetic
state at zero temperature.13,15,16 The magnetic properties of
LiHoF4 are due to Ho3+ rare-earth magnetic ions. The elec-
tronic ground state of Ho3+ is 4f10, which gives small ex-
change coupling,20,56,57 such that the predominant magnetic
interaction between the Ho3+ ions are long-range magnetic
dipole-dipole interactions. Hund’s rules dictate that the total
angular momentum of a free ion Ho3+ is J=8 �L=6 and S
=2� and the electronic ground-state configuration is 5I8.
LiHoF4 is a compound with space group C4h

6 �I41 /a� and lat-
tice parameters a=b=5.175 Å and c=10.75 Å. It has four
Ho3+ ions per unit cell positioned at �0,0,1/2,�, �0,1/2,3/4�,
�1/2,1/2,0�, and �1/2,01/4�.56 The crystal has S4 symmetry,
which means the lattice is invariant with respect to a 


2 rota-
tion about the z axis and reflection with respect to the x-y
plane.

In the crystal structure �Fig. 2�, the Ho3+ ions are sur-
rounded by F− ions, which create a strong crystal electric
field with S4 symmetry. This crystal field lifts the 17-fold
degeneracy of the 5I8 configuration, giving a non-Kramers
ground-state doublet. The next excited state is a singlet with
an energy gap of �11 K above the ground-state
doublet.16,17,43,58 The crystal-field Hamiltonian and the
crystal-field parametrization are discussed in detail in Appen-
dix A. Holmium is an isotopically pure element with nuclear
spin I=7 /2, which is coupled to the electronic spin J via the
hyperfine contact interaction AI ·J, where A�39 mK.56,59

III. EFFECTIVE THEORY OF LiHoF4 FOR THE LOW
Bx ÕTc REGIME

In this section we derive an effective model suitable for
describing LiHoF4 in the small-transverse-magnetic-field re-

c = 10.75 Å

a = b = 5.176 Å
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HoHo
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FIG. 2. �Color online� The crystal structure of LiHoF4. NN iden-
tifies the first-nearest neighbors and NNN identifies the next-nearest
neighbors.
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gime, where Bx /Tc→0 �Tc is the critical temperature when
Bx=0�. The simplicity gained by using an effective theory
gives us the ability to capture the essential physics and to
easily reinvestigate the influence of the different parameters
affecting the behavior of the phase diagram of LiHoF4 in the
Bx /Tc→0 regime. We derive the required effective model in
two steps. First, in LiHoF4, in the temperature range that we
are interested in, which is close to or below Tc�Bx=0�
=1.53 K, the high-energy scales are well separated from the
low-energy sector. The energy scale for dipolar interactions
between nearest-neighbor Ho3+ ions is about 0.31 K. This is
much smaller than the energy gap between the two first low-
est single-ion energy states and the next-higher crystal-field
states ��11 K�. In this case, one can neglect the higher-
energy states and reduce the full Hamiltonian Hilbert space
to a smaller subspace spanned by the two lowest-energy
states. This enables us to deduce a low-energy effective spin-
1/2 Hamiltonian for LiHoF4. Second, we derive a semiclas-
sical effective Hamiltonian from the low-energy spin-1/2
Hamiltonian by incorporating the transverse-field term per-
turbatively via a cumulant expansion. We can then perform a
classical Monte Carlo using this semiclassical effective
Hamiltonian to investigate the small Bx /Tc regime.

A. Effective spin-1/2 Hamiltonian

As mentioned in Sec. II, there are three types of interac-
tions that play a role in the magnetic properties of LiHoF4.
The main interaction is the long-range dipole-dipole interac-
tion between the Ho3+ magnetic ions denoted by

Hdip =
1

2
�gL�B�2�

i�j
�
��

Lij
��Ji

�J j
�, �2�

where � ,�=x ,y ,z and Ji is the total angular momentum of
Ho3+ ion i. Lij

�� is the magnetic dipole interaction, written in
the form Lij

���rij�= �����rij�2−3rij
�rij

v � / �rij�5, where rij =r j −ri,
where ri and r j are the positions of ions i and j, respectively.
gL=5 /4 is the Landé g factor of free Ho3+ and �B
=0.6717 K /T is the Bohr magneton. The dipolar interaction
is complemented by a short-range nearest-neighbor Heisen-
berg exchange interaction,

Hexch =
1

2
Jex �

i,NN
Ji · JNN, �3�

where NN denotes the nearest neighbors of site i. This ex-
change interaction is considered to be weak and
isotropic.20,60 The third interaction is the hyperfine coupling
between the electronic and nuclear magnetic moments,

Hhyp = A�
i

�Ii · Ji� . �4�

The hyperfine constant A�39 mK is anomalously large in
Ho3+-based materials.13,20,42 Thus, the complete Hamiltonian
is written as

H = �
i

VC�Ji� − gL�B�
i

BxJi
x + Hdip + Hexch + Hhyp. �5�

The first two terms are single-ion interactions, where VC de-
scribes the strong crystal-field interactions discussed in Sec.

II and Appendix A. The second term is the Zeeman interac-
tion. Henceforth, we ignore Hhyp since our goal, as explained
in Sec. I, is to investigate the small Bx and small �Tc�0�
−Tc�Bx�� /Tc�0� regime, where, as already suggested by the
results of Ref. 20 and, as shown in the inset of Fig. 1, the
effects of hyperfine interactions are negligible. The first two
single-site �noninteracting� terms in H, denoted as

Hsingle-site = VC�J� − gL�BBxJ
x, �6�

can be easily numerically diagonalized for arbitrary trans-
verse field Bx.

20 ��Bx�� and ���Bx�� are the two lowest states
of the single-ion Hamiltonian �Eq. �6�� for a given Bx. Their
corresponding energies are denoted by E�Bx� and E��Bx�.

At Bx=0 these two states form a doublet, but Bx�0 lifts
the degeneracy. The Ising subspaces �↑ � and �↓ � are chosen
by performing a unitary rotation on the ��Bx�� and ���Bx��
states:

�↑� =
1
	2

��� + exp�i	����� ,

�↓� =
1
	2

��� − exp�i	����� . �7�

The phase 	 is chosen such that the matrix elements of the
operator Jz between �↑ � and �↓ � is real and diagonal, giving
for Ji

z, Ji
z=Czz�i

z. Since the first excited state, ���Bx��, above
��Bx�� and ���Bx��, is at an energy at least seven times
higher than kBTc�Bx� and is repelled for all Bx from the
��Bx�� and ���Bx�� set �see Fig. 1 of Ref. 20�, we henceforth
neglect all excited crystal-field states and work with a re-
duced Hilbert space spanned by ��Bx�� and ���Bx�� or
equivalently �↑ � and �↓ �. Projecting the single-ion Hamil-
tonian in Eq. �6� in this two-dimensional subspace for an
arbitrary ion i, we get for the transverse field part of the
Hamiltonian

HT = Ē�Bx� −
1

2
��Bx��x, �8�

where Ē�Bx�= 1
2 �E�Bx�+E��Bx�� and ��Bx�=E��Bx�

−E�Bx�. The energy difference between the two lowest
states induced by the transverse magnetic field Bx can al-
ready be interpreted as an effective transverse field �=

��Bx�
2

acting on Seff=
1
2 degrees of freedom at each site. The depen-

dence of ��Bx� on the magnetic transverse field Bx is plotted
in Fig. 3.

Since we are working with a two-dimensional subspace
for each ion i, we can write the interactions between Ji

� and
J j

� in terms of interactions between Pauli matrices. Indeed,
any operator in a two-dimensional space can be written as a
linear combination of �i

� Pauli matrices plus the unit matrix
�0
1. In order to express Ji

� in terms of �i
�, we project Ji

� in
the subspace spanned by �↑ � and �↓ �.

Specifically, we write the J� operator as

J� = C�0�0 + �
�=x,y,z

C���Bx���, �9�

where
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C�0 =
1

2
��↑ �J��↑� + �↓ �J��↓�� ,

C�z =
1

2
��↑ �J��↑� − �↓ �J��↓�� ,

and

C�x =
1

2
��↑ �J��↓� + �↓ �J��↑�� ,

C�y =
1

2i
��↑ �J��↓� − �↓ �J��↑�� .

Using the crystal-field parameters of Refs. 16 and 20, the
evolution of the C�� and C�0 parameters as a function of Bx

is determined and plotted in Fig. 4. We see that Czz is the
largest term compared to all the other C��.

For the Hamiltonian in Eq. �5�, the Ji
� operators are sub-

stituted by their two-dimensional representations introduced
in Eq. �9�. This leads to a complicated looking Hamiltonian
that acts within the Ising subspace of �↑ � and �↓ �. The pro-
jection generates various kinds of interactions among the ef-
fective Seff=

1
2 spins. Via Eq. �7�, a specific rotated subspace

was chosen, such that Cz�=0 ��=x ,y ,0; �0
1�. As shown
in the inset of Fig. 4, Cxy, Cyx, and Cy0 are very small, so the
interacting terms containing these coefficients can be safely
neglected. Neglecting these terms, we obtain

Hspin-1/2 =
1

2
�gL�B�2�Czz

2 �Bx��
i�j

Lij
zz�i

z� j
z + 2Czz�Bx�Cxx�Bx��

i�j

Lij
zx�i

z� j
x + 2Czz�Bx�Cyy�Bx��

i�j

Lij
zy�i

z� j
y

+ Cxx
2 �Bx��

i�j

Lij
xx�i

x� j
x + Cyy

2 �Bx��
i�j

Lij
yy�i

y� j
y +

1

2
Jex�

�

C��
2 �Bx� �

i,NN
�i

��NN
� + �gL�B�2Czz�Bx�Cx0�Bx��

i�j

Lij
zx�i

z

+ �
i
�Cx0�Bx�Cxx�Bx��4Jex + �gL�B�2�

j

Lij
xx −

��Bx�
2 ��i

x. �10�

When the external magnetic field Bx is equal to zero, only
Czz�0��0 and all the other C�� and C�0 are zero �see Fig. 4�.
Hence, in the absence of an external magnetic field, the sys-
tem can be described by a simple classical dipolar Ising
model.20 Fortunately, a number of interaction terms are zero
or can be neglected with respect to the leading Ising interac-
tion, which is proportional to Czz

2 �Bx��i�jLij
zz�i

z� j
z. As we can

see from Eq. �10�, for pure LiHoF4, effective �i
x� j

x and �i
y� j

y

pairwise interactions as well as a linear transverse field along

the x direction are induced in the presence of an external
magnetic field. As suggested in Fig. 5 and already assumed
in Ref. 20, we expect the quantum fluctuations induced by
these terms via either dipolar or exchange coupling to be
quite small and negligible compared to the quantum fluctua-
tions induced by ��Bx�. For the pure �disorder-free� LiHoF4,
the invariance of the dipolar interactions under lattice mirror
symmetries forces � jLij

zx=0. So the linear term with
Czz�Bx�Cx0�Bx��i�jLij

zx�i
z vanishes. Considering the

0 1 2 3 4 5
0

1

2

3

4

5

6

B
x

(Tesla)

0 1 2 3 4 5

−0.08

−0.06

−0.04

−0.02

0

C
µν

Pa
ra

m
et

er
s

C
zz

C
x0

C
yy

C
xx

C
yx

C
y0

C
xy

B
x

(Tesla)

FIG. 4. �Color online� The evolution of the C�� parameters us-
ing the crystal-field Vc from Refs. 16 and 20. In the inset one can
see that Cxy �Cy0. Coefficients that are not plotted are zero.
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FIG. 3. �Color online� The energy splitting of the ground-state
doublet, ��Bx�
E��Bx�−E�Bx�, in LiHoF4 as a function of Bx, the
transverse magnetic field. The crystal-field Vc was obtained from
Refs. 16 and 20. For more details on the crystal field and crystal-
field parametrization, refer to Appendix A.
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Czz�Bx�Cxx�Bx��i�jLij
zx�i

z� j
x term, again because of lattice

mirror symmetry, one has �i�jLij
zx�i

z�� j
x�=0. Therefore this

term can contribute only via thermal fluctuations above its
vanishing mean-field contribution. Since

Cx0�Bx�
Czz�Bx�

�1, we ex-
pect the �second-order� fluctuation contribution effects from
the above �i

z� j
x term to be small. Hence, we neglect the

Czz�Bx�Cxx�Bx��i�jLij
zx�i

z� j
x term in Eq. �10�. We should em-

phasize that for diluted LiHoxY1−xF4, since the lattice mirror
symmetries are destroyed, the two latter terms, proportional
to �i�jLij

zx�i
z and �i�jLij

zx�i
z�� j

x�, can no longer be
neglected.19,31 Indeed, these are the terms responsible for the
generation of the longitudinal random fields19,30,31 discussed
in Sec. I.

Hence, the spin-1/2 Hamiltonian in Eq. �10� can be fur-
ther simplified to a familiar looking transverse field Ising
Hamiltonian with a dipolar and nearest-neighbor exchange
Ising interaction,

Hspin-1/2 =
1

2
Czz

2 �Bx���gL�B�2�
i�j

Lij
zz�i

z� j
z + Jex �

i,NN
�i

z�NN
z 

−
��Bx�

2 �
i

�i
x. �11�

To simplify the calculations and in order to be consistent
with the notation of Ref. 20 as well as for further comparison
between our simulation results and those of Ref. 20, we lump
the whole Bx dependence in the transverse-field term. To do
so, a renormalization factor ��Bx� is defined as

��Bx� =
Czz�Bx�
Czz�0�

. �12�

We renormalize the Hamiltonian as

Hspin-1/2 = ���Bx��2H̃ , �13�

with, according to Eq. �11�,

H̃ =
1

2
Czz

2 �0���gL�B�2�
i�j

Lij
zz�i

z� j
z + Jex �

i,NN
�i

z�NN
z 

− gL�BCzz�0�B̃x�
i

�i
x, �14�

where the renormalized effective transverse magnetic field

B̃x is related to the real applied Bx via

B̃x =
��Bx�

2gL�BCzz�0����Bx��2 , �15�

consistent with Ref. 20. In discussing Monte Carlo simula-

tions below, we also define a renormalized temperature T̃ in

conjunction with H̃, with T̃ defined as

T = ���Bx��2T̃ , �16�

where T is the real physical temperature.
All results from the Monte Carlo simulations presented in

Sec. III B were obtained by considering the renormalized
Hamiltonian �Eq. �14�� and performing the simulations with

respect to the renormalized T̃ and B̃x. Before presenting our
Monte Carlo simulations of Eq. �14� pertaining to LiHoF4,
we first discuss the technique we employed to handle quan-

tum fluctuations perturbatively for small B̃x / T̃.

B. Effective classical temperature-dependent Hamiltonian:
Perturbation expansion

In this section, we focus on the simplified spin-1/2 Hamil-
tonian in Eq. �14�, and aim to implement a cumulant pertur-
bative cumulant Monte Carlo method for this spin-1/2 trans-
verse Ising model.61,62 For small quantum fluctuations, close
to the classical critical temperature, we are able to derive an
effective classical Hamiltonian analytically, where quantum
fluctuations are incorporated perturbatively. Using such ef-
fective perturbative Hamiltonian, we can then perform clas-
sical MC simulations. To set the stage, we first consider a
general transverse-field Ising Hamiltonian such as

H =
1

2�
i,j

Lij
zz�i

z� j
z +

1

2
Jex �

i,NN
�i

z�NN
z − ��

i

�i
x − h0�

i

�i
z.

�17�

� is the transverse field in the x direction and h0 denotes an
external longitudinal field along the z direction. For compact-
ness, note that we passed from dipolar interactions denoted
Czz

2 �0��gL�B�2Lij
zz to Lij

zz and from exchange interaction
Czz

2 �0�Jex to Jex �see Eq. �14��. The partition function Z for a
system with Hamiltonian �17� is

Z = Tr�e−�H� = �
��i�

��i�e−�H��i� , �18�

where Z is obtained by tracing over �i which are, for ex-
ample, direct products of �z eigenvectors ��↑ � and �↓ �� and
�
1 /kBT. We can write Hamiltonian �17� as H=H0+H1.
H0 is the classical part of the Hamiltonian, for which the �i
are eigenvectors. H1
−��i�i

x is the quantum term, which
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FIG. 5. �Color online� The ratios of the typical values of terms
neglected in Hamiltonian �11� with respect to �, using the crystal-
field Vc from Refs. 16. The dipolar sum is performed using the
Ewald method with no demagnetization term.
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does not commute with H0. The existence of these two non-
commuting terms in H prevents us from applying classical
Monte Carlo techniques directly to the system. However, we
can derive an effective classical Hamiltonian Heff��i� as a
functional of �i, such that

e−�Heff��i� = ��i�e−�H��i� . �19�

Referring to the definition above in Eq. �19�, since the right-
hand side of Eq. �19� is the matrix element with respect to
��i�, Heff��i� is a functional depending only on the set of �i

z

eigenvalues. The partition function can then be written as a
classical partition function,

Z = �
��i�

e−�Heff��i�. �20�

By finding an explicit expression for Heff��i�, one can calcu-
late the thermodynamical properties of the system described
by H by performing classical Monte Carlo simulations using
Heff instead of H.

To proceed, we write the matrix element ���e−�H��� in
terms of a cumulant expansion,63

���e−�H��� = exp�− ����H���

+ �
n�1

�
�− ��n

n!
����H − ���H����n��� ,

�21�

where we used ��� to mean a typical ��i� eigenvector in order
to make the notation more compact. Using Eq. �21�, we can
derive the effective Hamiltonian Heff��i� perturbatively. The
details of the derivation of Heff��i� are presented in Appendix
B. Heff��i� is, to order O��2�, given by

Heff = H0 + ��2�
i

��i
zF1�2��hi + h0�� − F0�2��hi + h0��� .

�22�

In Eq. �22�, hi is the total local field affecting the spin at site
i caused by all the other spins and which is

hi = − �
j�i

Lij
zz� j

z − Jex�
NN

�NN
z , �23�

and h0 is the external longitudinal field in the z direction. The
functions F0�x� and F1�x� are defined as

F0�x� 

cosh�x� − 1

x2 ,

F1�x� 

sinh�x� − x

x2 . �24�

In the effective Hamiltonian Heff, the effect of quantum
fluctuations is taken into account perturbatively to order
O���2 / �H0��, where �H0� denotes the order of magnitude of
H0, the classical part �first two and fourth terms� of Eq. �17�.
To obtain the thermodynamical properties of the system for
small transverse fields, we can therefore perform a conven-

tional Monte Carlo simulation using the Metropolis algo-
rithm on the classical temperature-dependent Heff. Since we
are interested in thermal averages, we can calculate thermo-
dynamical quantities by differentiating the partition function,
which is written in terms of Heff��i�, with respect to h0, �, or
�. The effective Hamiltonian has an explicit h0 and � depen-
dence. For each true thermodynamical quantum-mechanical
quantity, we obtain a pseudo-operator counterpart. For ex-
ample, the pseudo-operators corresponding to �E�, �Mz�,
�Mx�, �Mz

2�, and �Mz
4� are calculated in Appendix C, where E,

Mz, and Mx are the energy and magnetization operators along
the z and x directions, respectively. �¯� stands for the Bolt-
zmann thermal average.

Because of its perturbative nature in ����, this method is
not reliable for large transverse fields or low temperatures.
To illustrate the range of validity of this method, we consider
a simple one-dimensional nearest-neighbor transverse-field
Ising-model Hamiltonian H=−J�i�i

z�i+1
z −��i�i

x with peri-
odic boundary conditions. For a one-dimensional chain of
ten ions, we are able to calculate the exact total energy of the
chain by exact diagonalization. To check our perturbative
MC technique, we calculated the energy of the Ising chain as
a function of temperature for a given transverse field. To
make a comparison, we also performed a quantum Monte
Carlo �QMC� simulation on the system. In this QMC simu-
lation, we used the Trotter-Suzuki64 formalism and applied a
continuous-time-cluster algorithm.65 In Fig. 6, for a quite
large transverse field � /J=1, we plot the average thermal
energy per spin as a function of temperature obtained from
exact diagonalization, time-cluster QM, and “perturbative
MC” using the effective perturbative Hamiltonian described
above. This tests confirms the quantitative correctness of the
perturbative Monte Carlo scheme at small ��2 /J. Other ther-
modynamic quantities �e.g., �Mz� and �Mx�� also compare
well with the time-cluster QMC and exact diagonalization
results.
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FIG. 6. �Color online� Energy per spin as a function of tempera-
ture for a simple one-dimensional nearest-neighbor Ising chain with
a transverse field of �=J and N=10 spins and periodic boundary
conditions. The energy is obtained by exact diagonalization of the
Hamiltonian, a time-cluster QMC algorithm, and a classical Monte
Carlo algorithm of the perturbative effective Hamiltonian.
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Before we present our Monte Carlo results for LiHoF4, let
us summarize what we have done so far:

�1� Since the spin-spin interactions and Tc�Bx� are small
compared to the gap between the low-lying states ��Bx��
and ���Bx�� with respect to the excited state ���Bx��, we re-
cast the full microscopic model of LiHoF4 in terms of an
effective transverse-field Ising model with effective spin-spin
interactions and effective transverse field ��Bx� that depend
on the real physical applied magnetic field Bx.

�2� Since we are interested in a regime where Bx /Tc is
small, we develop a perturbation expansion of the partition
function in powers of Bx /T. We recast the thermal averages
of real physical observables in terms of quantities that can be
determined via a classical Monte Carlo simulation of a fur-
ther effective temperature-dependent classical Hamiltonian.

Having shown that the perturbative cumulant MC can
quantitatively describe the TFIM at small ��2 / �H0�, we pro-
ceed to Sec. IV to describe how we use this method to study
LiHoF4 at small transverse field Bx.

IV. PERTURBATIVE CUMULANT MONTE CARLO
STUDY OF LiHoF4

In this section we report results from the perturbative MC
simulation to study the low-transverse-field �Bx� properties
of LiHoF4 using the low-field perturbative effective Hamil-
tonian in Eq. �22� and using Eq. �23� for the definition of the
local hi fields. As discussed in Sec. I, our primary goal here
is to confirm the quantum Monte Carlo results from the sto-
chastic series expansion in Ref. 20 and the contrasting results
with the transverse field Bx phase diagram in Ref. 13 for
small Bx �see Fig. 1�. Hence, we are indeed interested in
LiHoF4 in the case of asymptotically weak Bx /Tc. The tem-
perature we use in our simulations is the renormalized tem-
perature defined in Eq. �16�. Regarding Eq. �14�, the trans-
verse field � used in the perturbative effective Hamiltonian

�Eq. �22�� is �=gL�BCzz�0�B̃x, where B̃x is defined in Eq.
�15�. For the local field hi, defined in Eq. �23�, we have
Lij

zz=Czz
2 �0��gL�B�2Lij

zz and Jex=Czz
2 �0�Jex.

In Sec. IV A, we discuss the reaction-field �RF� and the
Ewald summation �ES� methods to deal with long-range di-
polar interactions. Then, in Sec. IV B, we explore how the
Monte Carlo results in the classical regime, where Bx=0, are
affected by the choice of the method we use. Next, in Sec.
IV C, we discuss the sensitivity of the Jex estimates to finite-
size effects and boundary conditions as well as the effect of
using different methods �RF or ES� in estimating Jex. Finally,
in Sec. IV E, we investigate to what extent the final results
depend on the set of crystal-field parameters chosen to de-
scribe the Ho3+ single-ion properties.

A. Reaction-field method versus Ewald summation method

Griffiths’ theorem47 states that in the absence of an exter-
nal field, the free energy for a dipolar lattice system has to be
independent of the sample shape in the thermodynamical
limit. Therefore, as an immediate consequence, in the ab-
sence of an external field, the net magnetization Mz of the
sample has to be zero. Otherwise, for Mz�0, a shape-

dependent demagnetization field would couple to the dipole
moments in the sample, making the free energy shape depen-
dent. Here, the demagnetization field is the field originating
from the magnetic moments sitting on the boundary of the
sample. In the thermodynamic limit, domains form in order
for the system to have Mz=0.

Experiments on LiHoF4 showed that the results are shape
independent, confirming Griffiths’ theorem and domain-wall
formation.66,67 There is evidence that in LiHoF4 long needle-
shaped domains form along the c axis.66,67 If we assume that
there is a uniform macroscopic bulk magnetization Mz
within a long needle-shaped domain and the external mag-
netic field acting on the domain is Bz

ext, then the susceptibility
� of the domain is

� = Mz/Bz
ext. �25�

It should be noted that the macroscopic bulk magnetization
Mz is given by Mz=n0gL�B�Jz�, where n0=4 /a2c is the
number of dipoles per unit of volume and where a2c is the
volume of the unit cell. Using Jz=Czz�

z, the bulk magneti-
zation Mz is related to the total moment of the effective
Ising spins, Mz=�i�i

z, in the Seff=1 /2 picture by

Mz =
4

N

gL�BCzz�Bx�
a2c

�Mz� , �26�

where N is the total number of dipoles. We consider an
imaginary macroscopic sphere deep inside a needle-shaped
domain. The magnetization inside the sphere should be equal
to the uniform bulk magnetization of the long needle-shaped
domain. Apart from the external magnetic field Bz

ext, spins
enclosed in the sphere experience an additional field, which
originates from the spins on the outer boundary of the imagi-
nary sphere embedded in the long needle-shaped domain.
The magnetic surface charge density on the surface of a
needle-shaped domain with uniform magnetization Mz pro-
duces an internal magnetic field Bneedle=4
Mz. Meanwhile,
the magnetic surface charge density on the surface of the
uniformly magnetized sphere with magnetization Mz in-
duces a �demagnetization� magnetic field 8


3 Mz inside the
sphere that is in the direction opposite to the applied field
and to Bneedle. Therefore, the total field Bz

sph inside the spheri-
cal cavity is68

Bz
sph = Bz

ext −
8


3
Mz + 4
Mz, �27�

with Mz uniform for a bulk sample. Now, instead of study-
ing the whole needle-shaped bulk sample, we can equiva-
lently study an isolated spherical sample with an effective
Bz

sph field applied to it. If we substitute Bz
ext with Mz /� and

Bz
sph with Mz /�sph, where �sph is the susceptibility of the

spherical domain, we can write � as a function of �sph,

� =
�sph

1 − 4
�sph/3
. �28�

If �sph is obtained via some calculation procedure for a
spherical sample, one can use Eq. �28� to determine the mac-
roscopic susceptibility of the bulk sample within which the
sphere is embedded. Specifically, simulations are performed

PERTURBATIVE QUANTUM MONTE CARLO STUDY OF… PHYSICAL REVIEW B 78, 184408 �2008�

184408-9



on a finite-size sphere, and the effect of the macroscopic bulk
surrounding the sphere is incorporated in a mean-field man-
ner by considering an effective field Bz

sph interacting with the
spins inside the spherical sample. Using this method, called
the reaction-field �RF� method, Chakraborty et al.20 calcu-
lated the finite-size sphere susceptibility �sph by using the
stochastic series-expansion quantum Monte Carlo method.41

They considered an N-spin system enclosed by a sphere,
where the susceptibility of the sphere is obtained from the
spin-spin correlation. Referring to Eq. �28�, the paramagnetic
to ferromagnetic transition �criticality� within the macro-
scopic long needle-shaped domain occurs at the temperature
for which �sph= 3

4
 occurs for a spherical sample. It should be
noted that this criterion is derived for macroscopic systems
in the thermodynamic limit. Therefore, as discussed in Ref.
51, because of the fluctuation of magnetic moments on the
boundary of a finite-size surface, quantities such as specific
heat and susceptibility obtained via the RF method are quite
sensitive to finite-size effects.

The ES method49–51 is an alternative approach used to
obtain reliable quantitative results for describing real dipolar
materials in a periodic boundary condition �PBC�.52,53 In the
ES method, the system is modeled by replicating a simula-
tion cell with a linear size of L into a large array of image
copies. The ES method generates an effective dipole-dipole
interaction ��,�Leff

���rij��i
�� j

� between the two magnetic mo-
ments �i and � j within the simulation cell. Here, �i
=gL�BJi and � ,�=x ,y ,z. This is achieved by periodically
replicating the simulation cell with a volume of �0=L3a2c
and summing convergently the interactions between the real
spins i and j in the specified volume of the simulation cell of
dimensionless linear size L and all the periodically repeated
images of j as

Leff
���rij� = �

n
L���rij + n� , �29�

where n= �nxLa ,nyLa ,nzLc� with nx, ny, and nz integers.
L���rij�=Lij

��= �����rij�2−3rij
�rij

� � / �rij�5 are dipolar couplings,
which can be written in a more compact form as L���rij�
=�i

�� j
��rij�−1. Therefore

Leff
���rij� = �i

�� j
��

n
�rij + n�−1. �30�

The sum �n�rij +n�−1 is calculated using the Ewald method,
such that the sum contains a real-space sum plus a
reciprocal-space sum minus a self-term,49–51

�
n

�rij + n�−1 = �
n

erfc���rij + n��
�rij + n�

+
1


�0
�
k�0

4
2

k2 e−k2/4�2
cos�k · rij� −

�

	

�ij .

�31�

Here erfc�x�= �2 /	
��x
�e−t2dt and k denotes the reciprocal

vectors of the simulation cell. The convergence factor � is
chosen such that the real-space sum and the reciprocal-space
sum converge about equally rapidly.49–51 The simulation cell
and all its replicated images are embedded altogether in a

continuous medium. Additionally, each spin experiences a
demagnetization field, which originates from the magnetic
moments on the boundary of the system.51 This boundary
contribution depends on the shape of the boundary of the
macroscopic sample that we are interested in modeling. I.e.,
for a long needle-shaped sample, the demagnetization field
correction to the ES representation of the dipole-dipole inter-
actions is zero.51 However, for a bulk spherical sample, the
magnetic polarization of the magnetic moments on the
boundary of the sphere induces a demagnetization field pro-
portional to the magnetization of the sample, Mz= 1

�0
�i�i,

which creates an additional effective field acting on the mag-
netic moments. The net effect results in an extra effective
interaction

4


2�� + 1

�i · � j

�0
�32�

between magnetic moments �i and � j to be incorporated in
the simulation.51 In practice, the term in Eq. �32� is merely
added to the total effective dipolar interaction between spins
i and j derived by the ES method. Here, �� is the magnetic
permeability of the surrounding continuum. For a sample
surrounded by vacuum, ��=1.69 53

As a result, within the ES method, each spin interacts with
all the “real” spins in the specified volume and with all their
replicated periodic images. Therefore, one would expect the
model treated by the ES method to behave more like a mac-
roscopic system than when using the RF method. However,
there are still some finite-size effects due to the artifact of
having a periodic sequence of image arrays of finite size L.
Once an effective dipole-dipole interaction between spins i
and j within the simulation cell has been derived via the ES
technique, one can perform Monte Carlo simulations using
the standard Metropolis algorithm. Xu et al.70 used this ES
technique to simulate long-range dipolar Ising interactions
for both the body-centered-cubic �bcc� and body-centered-
tetragonal lattices in zero applied field. In a more recent
work,37,38 the ES technique was implemented in a Monte
Carlo simulation study of LiHoxY1−xF4 in zero applied field.
In Sec. IV B we discuss the results of MC simulations using
the cumulant perturbative method. In our simulations, we
incorporate the long-range dipolar interactions using both the
RF method as discussed in Ref. 20 and the ES method. The
influence of each method on the MC results is investigated in
some detail.

B. Cumulant Monte Carlo simulation results

1. Results from reaction-field method

In this subsection we describe the Monte Carlo results
obtained using the effective perturbative Hamiltonian �Eq.
�22�� by using the reaction-field method for a spherical
sample embedded in a long needle-shaped domain and the
ES method for a long needle-shaped sample as well as a
spherical sample embedded in a long needle-shaped domain.
To establish a comparison of the effective perturbative
Hamiltonian with previous QMC results,20 we first per-
formed Monte Carlo simulations for a finite-size sample with
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open boundary conditions, containing N=295 spins, with Jex
set to zero. These conditions are identical to the ones of Ref.
20. As shown in Fig. 7 and as similarly done in Ref. 20, we
used the reaction-field criterion set by the divergence of �
�see Eq. �28��, �sph= 3

4
 , to find the effective critical tempera-

ture T̃c�B̃x� as a function of the effective field B̃x, where T̃

and B̃x are defined in Eqs. �15� and �16�. �sph is calculated
using

�sph =
1

kBT̃



N
�Mz

2� . �33�

The prefactor  is given by

 =
4

a2c
�gL�BCzz�0��2. �34�

In the perturbative MC method, for determining �Mz
2�, we

used the pseudo-operator defined by Eq. �C4�.
The phase diagram as a function of the effective tempera-

ture T̃ and the effective field B̃x, using the effective pertur-
bative Hamiltonian �Eq. �22�� and the above cumulant ex-
pansion, is shown in Fig. 8. It can be seen that at low enough
fields close to the classical phase transition, our perturbative
Monte Carlo results, using the same reaction-field method of
Ref. 20, closely match those from the quantum Monte Carlo
results of Ref. 20. Using the reaction-field method for Bx

=0, we get T̃c=2.03 K, where Tc�Bx=0�= T̃c�Bx=0� since
��Bx=0�=1.

2. Results from Ewald summation method: Needle-shaped
sample

The simulations using the ES method were performed
with simulation boxes of size L=7,8 ,9, with each box con-
taining N=4�L3 spins. The dipolar interactions of ions in-
side the simulation boxes were derived via the ES technique
by assuming an infinitely long needle-shaped sample.71 That

is, the additional demagnetization term correction from Eq.
�32� was not incorporated into the Ewald representation of
the dipolar interactions between ions i and j. We determined
the critical temperature by finding the temperature where the
magnetization Binder ratio,72 Q=1− 1

3 �Mz
4� / �Mz

2�2, for sys-
tem sizes L=7, 8, and 9 intersect. The quantities �Mz

4� and
�Mz

2� are calculated using Eqs. �C4� and �C9� within the per-
turbative effective Hamiltonian scheme. The intersection
point in Fig. 9�a� is at the critical temperature Tc=1.92 K.
As demonstrated in the inset of Fig. 9�a�, plotting Q as a
function of L1/��T−Tc� shows a good data collapse for sys-
tem sizes L=7, 8, and 9, with the mean-field exponent �
=1 /2. This is consistent with the argument that the upper
critical dimension for dipolar interactions is d=3. A more
rigorous analysis of three-dimensional dipolar systems
shows logarithmic finite-size scaling corrections.70,73 We
have not investigated these corrections in this study as these
are outside the scope of this work. As long as Tc�Bx�0�
�0, the critical behavior should be controlled by the same
critical exponents as for Bx=0.1

3. Results from combined reaction-field and Ewald summation
methods: Spherical sample

We have repeated the perturbative MC simulations using
the ES technique but with a slightly different approach. In-
stead of simulating a long needle-shaped bulk and using the
Binder method to obtain the critical temperature, we simu-
lated a sample with a spherical shape. To do so, we derived
the effective dipolar interactions between the spins using the
ES technique for a sample with spherical boundary. The ef-
fect of the spherical boundary is taken into account by incor-
porating the additional effective interaction in Eq. �32� �Ref.
69� between spins i and j. One can then assume that this
spherical sample is embedded in a long needle-shaped bulk.
Recalling the derivation of Eq. �28� from Eq. �27�, where an
effective field Bz

sph is applied to the magnetic moments of the
sphere, one can determine the macroscopic � of the bulk by
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FIG. 7. �Color online� Finding T̃c using the perturbative Monte
Carlo method for a sphere of N=295 spins and Jex=0 and by using
the reaction-field �sph= 3
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FIG. 8. �Color online� Comparing the phase diagram of the per-
turbative Monte Carlo method with quantum Monte Carlo results
�Ref. 20� as a function of effective temperature and effective mag-
netic field for a sphere of N=295 spins and Jex=0, using the
reaction-field method of Ref. 20.
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obtaining �sph via the ES method for a spherical sample. This
procedure is somewhat similar to the one above that em-
ployed the reaction field for a finite-size system and which
led to the phase diagram in Fig. 8. Yet, there is a difference
between this ES calculation and the RF method above. The
latter uses a spherical sample with open boundary conditions
and considers bare dipolar interactions between a finite num-
ber of spins within a finite radius sphere. In the former, a
simulation box with periodic boundary conditions is consid-
ered. The effective dipolar interactions of ions inside the
simulation box are derived via the Ewald summation tech-
nique. In this approach a spherical boundary is considered
for the whole simulation box and all the replicated images of
the real box. In this case, each effective pairwise dipolar
interaction described by the ES representation has added to it
the extra interaction term given by Eq. �32�. Once again, the
origin of this additional interaction is the demagnetization
field, due to the polarization of the magnetic moments on the
spherical boundary. In this approach, the system behaves
much more like a macroscopic sphere compared to the
reaction-field method used above in Sec. IV B 1 and in Ref.
20. It is further assumed that this macroscopic sphere is em-
bedded inside a long macroscopic needle-shaped domain. By
employing the perturbative Monte Carlo method and using
Eq. �33�, we calculate �sph to obtain the critical temperature.
Based on Eq. �28�, the critical temperature is determined by
finding where the �sph= 3

4
 criticality criterion is satisfied. As
shown in Fig. 9�b�, for a simulation box of L=7, we obtain
Tc=1.92 K for a zero transverse field and Jex=0, very close
to the Tc previously derived using ES technique for a long
needle-shaped sample and shown in Fig. 9�a�. Thus, the two
approaches using ES technique lead to similar results. We
believe that the reason for the difference between the classi-
cal Tc obtained via ES technique and the Tc�Bx=0� obtained
using the reaction-field method20 is that in the reaction-field
method, the number of spins inside the cut-off sphere, which

is embedded in the needle-shaped domain, is of too limited
size. By using Eq. �28� within the reaction-field method, the
effect of the spins on the spherical boundary for a limited
size is in essence incorporated in a mean-field manner in the
simulation. For a hard, cut-off boundary, thermal fluctuations
on the boundary are underestimated, hence resulting in an
overestimated Tc. This overestimation of Tc, which decreases
with increasing size of the spherical boundary, is expected to
vanish in the thermodynamic limit L→�.

C. Nearest-neighbor exchange interactions

The zero-transverse-field critical temperature of 1.92 K
obtained above lies quite far above the experimental critical
temperature of 1.53 K. As suggested by Chakraborty et al.,20

it is reasonable to assume that the discrepancy may be related
to a nearest-neighbor antiferromagnetic exchange interac-
tion. Indeed, in the related LiTbF4 material, it has long been
known that a nonzero Jex coupling exists in Eqs. �3�.60 There
has been no direct determination for the magnitude of this
nearest-neighbor exchange in LiHoF4. However, there have
been indirect estimations, considering Jex as a free parameter,
such that the specific-heat56 and susceptibility57 calculations
based on mean-field theory fit to the equivalent experimental
measurements. Another procedure used to determine Jex
would be to fit theoretical calculation with neutron-scattering
data, similar to the procedure followed for LiTbF4.60 Re-
cently, Rønnow et al.16 performed inelastic-neutron-
scattering measurements on LiHoF4. Considering Jex as a
free parameter, they used the so-called effective-medium
theory to improve on the parameters estimated from the
random-phase approximation. They estimated Jex such that a
best fit with the experimental phase diagram is obtained.
While for their estimated Jex=1.16 mK value there is good
agreement with experiment when 2.0�Bx�4.0 T, as is
common in mean-field theory calculations and systematic
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FIG. 9. �Color online� �a� The Binder ratio crossings for L=7,8 ,9 system sizes, obtained by performing MC and using ES technique for

a long needle-shaped sample, with Bx=0, Jex=0. T̃=T for Bx=0. The inset shows that the Binder ratios collapse for the mean-field exponent
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sphere using the reaction-field scheme similar to that in Ref. 20 �i.e., same results as shown in Fig. 7 for the B̃x=0 data�. For the circles, we
have obtained the interaction between the ions by the ES technique for L=7 system size and incorporating the spherical boundary effect via

the demagnetization term of Eq. �32� and using Bx=0 and Jex=0, with again T̃=T for Bx=0. As one can see, the T̃c�1.92 K obtained here

agrees with the T̃c obtained using the Binder ratio crossing.
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improvements such as the effective-medium theory, the criti-
cal temperature is overestimated �by 14%� compared with
the experimental critical temperature at zero applied field
Bx=0.

In our work here, we use Monte Carlo techniques and
consider the exchange interaction as a free parameter. We
can estimate the Jex strength by adjusting its value such that
the experimental Tc is reproduced, as was done in Ref. 20.
Using the reaction-field method performed for finite spheres
in Ref. 20, for N=295 spins, Jex=6.07 mK was obtained. As
a check, we repeated our Monte Carlo simulations, also us-
ing the reaction-field method for the same number of spins,
and fitted Jex such that the experimental zero-field critical
temperature Tc=1.53 K is reproduced. We obtained the
same Jex=6.07 mK as in Ref. 20. It should be noted that, as
reported in Ref. 20, one does not obtain a unique Jex value
when performing simulations for different sphere sizes. The
Jex value strongly depends on the number of spins consid-
ered. In Ref. 20, for the largest system size considered �N
=3491�, Jex=5.25 mK was required to obtain a Monte Carlo
estimate of Tc of 1.53 K. There are two sources of errors that
affect the value of the estimated Jex obtained by the reaction-
field method of Ref. 20. First, for a given number of spins,
when Monte Carlo simulations are performed to calculate Tc,
the reaction-field method estimates a higher value for Tc
compared to that by the ES method. The sources of these
errors are finite-size effects and the underestimation of ther-
mal fluctuations on the boundary, as we now explain. To
push down the value of Tc obtained for Jex=0 such that it
matches the experimental value for Tc, an antiferromagnetic
Jex is required. For Jex=0, the reaction-field method gener-
ates a higher Tc compared to the ES method. Therefore, in
order to push down the Tc obtained from Monte Carlo simu-
lation to match the experimental value for Tc, a larger value
for the antiferromagnetic Jex is required using the RF method
than one required when using the ES method. Second, an-
other source of error affects the Jex value obtained using the
reaction-field method. It originates from the number of sur-
face bonds, which depends on the radius of the chosen cut-
off sphere. For ions close to the surface, some of the nearest
neighbors fall inside the spherical boundary, while some re-
main outside. Because of the missing number of exchange
interactions on the boundary, the overall exchange estimated
is forced to be larger than the actual value. When the ES
technique is used in conjunction with periodic boundary con-
ditions, this boundary effect problem no longer exists, mak-
ing the ES technique a more reliable tool for estimating
Jex.

52,53 To estimate Jex using our Monte Carlo simulations,
we used the Binder ratio crossing method and employed both
the ES technique for a long needle-shaped sample and the ES
technique for a macroscopic sphere embedded in a long
needle-shaped sample. For the latter case, the interactions
described by Eq. �32�, originating from the magnetic polar-
izations of the magnetic moments on the spherical boundary,
were considered as well. The two Jex values so determined
are the same, which are approximately Jex=3.91 mK, as il-
lustrated in Fig. 10. Recent Monte Carlo simulations,37

which also used the Ewald method, found a Jex value in very
good agreement with the value that we determine here, once
a set is appropriately rescaled by Czz�Bx=0�2=5.512 from
Fig. 4.

D. Transverse field versus temperature phase diagram

Having determined a consistent value for Jex, we are now
ready to perform Monte Carlo simulations for small trans-
verse magnetic fields Bx. The effect of quantum perturbations
is incorporated through the effective Hamiltonian in Eq. �22�,
which is derived from the renormalized Hamiltonian in Eq.
�14�. To illustrate the procedure, we show the crossing of the

Binder ratio Q for B̃x=0.05 T and B̃x=0.15 T in Fig. 11.
Equations �15� and �16� are used to obtain the real tempera-
ture T and real external transverse magnetic field Bx phase

diagram from the effective and B̃x values used in the simu-
lations.

Interestingly, using each of the numerical methods dis-
cussed above to obtain the phase diagram, it seems that for
small Bx the final phase diagrams demonstrating the critical
transverse field as a function of temperature are affected very
little in respect to the technique used. Figure 12 shows the
phase diagrams, using the perturbative Monte Carlo method
implementing the reaction-field method and the Ewald sum-
mation technique, compared with previous QMC results20

and experiment.13 We used Eqs. �15� and �16� to obtain the
real physical transverse magnetic field Bx and temperature T

from T̃ and B̃x. As one can see, all the phase diagrams ob-
tained from the effective perturbative method show good
agreement with the quantum Monte Carlo result of
Chakraborty et al.20 for small transverse fields up to a “real”
physical transverse magnetic field Bx�1.5 T, at which we
presume the lowest-order cumulant formulation of the effec-
tive classical Hamiltonian model breaks down. This is the
main result of this work.

In conclusion, we: �i� confirm the results of Ref. 20 but,
unfortunately, �ii� fail to explain the discrepancy between the
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FIG. 10. �Color online� The Binder ratio crossings for L
=7,8 ,9 system sizes, obtained by performing MC and using ES
technique for a cylindrical boundary with Bx=0. Jex=3.91 mK is
set such that the critical temperature Tc�1.53 K is obtained.

T̃=T for Bx=0. In the inset �sph is calculated by performing Monte
Carlo simulations, using Eq. �33�. The interaction between the ions
is obtained by the ES technique for L=7 system size and using a
spherical boundary condition for Bx=0. The same Jex=3.91 mK is

used and a similar Tc�1.53 K is obtained. T̃=T for Bx=0 here.
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numerical and experimental results. We are thus led to pon-
der on theoretical reasons that may explain this discrepancy.
We explore one such possibility in Sec. IV E, which is also
the one that was put forward in Ref. 20.

E. Other crystal-field parameters

As reported in Ref. 20, we find that the numerical phase
diagrams show a discrepancy with the experimental phase
diagram, even at asymptotically small transverse fields. In-
deed, this was one of the main motivations for the present
work. As can be seen in Fig. 12, our efforts in considering �i�
a different Monte Carlo scheme and �ii� other ways to handle
the long-range dipole-dipole interactions have not allowed us
to resolve the discrepancy between the results from numeri-
cal simulations of Ref. 20 and the experimental phase dia-
gram of Ref. 13. Chakraborty et al.20 suggested that this
discrepancy may be related to uncertainties in the crystal-
field parameters. We now briefly explore this possibility.

As discussed in Appendix A, crystal-field parameters are
usually obtained such that theoretical calculations match
with experimental data from electron-paramagnetic-
resonance �EPR�,43 inelastic-neutron-scattering �INS�,16 or
susceptibility measurements.17 Recalling the discussion that
led to the derivation of the effective spin-1/2 description of
LiHoF4 in Eq. �11�, one realizes that the parameters Czz�Bx�
and ��Bx� are implicit functions of the crystal-field-level en-
ergies and crystal-field-level wave functions. As a result, the
mapping of the problem to a spin-1/2 model depends on the
chosen values of the Bn

 crystal-field parameters �see Appen-
dix A� entering in the description of the crystal-field Hamil-
tonian Vc. This state of affairs is made particularly important
since, unfortunately, there appears to be some ambiguity in
the literature about the empirical values of the Bn

 param-
eters. All the numerical results that were obtained in Secs.
IV B and IV D were based on the set of recent crystal-field
parameters reported in Refs. 16 and 20. In another work,
EPR spectroscopy experiments were performed on holmium-
doped LiYF4 and where the crystal-field parameters were
determined.43 Based on the EPR data reported in Ref. 43,
spectral parameters were refined in order to fit the observed

dependencies of the resonance frequencies on the external
magnetic field, giving a new set of crystal-field parameters
and an effective Landé g factor gL reduced from its pure 5I8
gL=5 /4 value down to an effective gL

eff=1.21. Using the al-
ternative set of crystal-field parameters of Ref. 43, as shown
in Fig. 13, we obtain alternative values for Czz�Bx� and
��Bx�. For example, for Bx=0, Czz�Bx=0�=5.49 and ��Bx�
=9.85 K, in comparison with Czz�Bx=0�=5.51 and ��Bx�
=10.85 K, obtained by using the crystal-field parameters
�CFPs� of Refs. 16 and 20.
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FIG. 12. �Color online� The phase diagrams of the critical trans-
verse field as a function of temperature for LiHoF4. The filled boxes
form the experimental phase diagram �Ref. 13�. The filled triangles
form the phase diagram obtained by QMC �Ref. 20� using the RF
method for a finite sphere with N=295 spins. The open stars are the
results from perturbative Monte Carlo �PMC� method using the
same RF method used in Ref. 20 for a sphere with N=295 spins.
Quite importantly, as discussed in the text, the reaction-field method
leads to a considerable overestimate of Jex. The open circles are
obtained using the perturbative Monte Carlo method in a needle-
shaped domain and using the ES method. The open diamonds are
obtained using perturbative Monte Carlo method in a bulk sphere
embedded in a needle-shaped domain and using the ES method and
the spherical boundary effect in Eq. �32�.
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Referring to Eq. �11�, one of the consequences of obtain-
ing a different Czz with the new CFPs and using the reduced
gL

eff=1.21 is that a different Tc�Bx=0� is obtained. Having
determined a different Tc via this new set of CFPs, the value
of Jex required to match the experimental Tc=1.53 K is dif-
ferent from the Jex=3.19 mK obtained using the CFPs of
Ref. 16. It should also be noted that the renormalization fac-
tor ��Bx�, which is defined in Eq. �12�, is related to Czz�Bx�.
The value of effective transverse field B̃x defined in Eq. �15�
also depends on the values of Czz�Bx�, ��Bx�, and gL

eff. There-
fore, when using the “new” CFPs from Ref. 43, the functions

��Bx� and B̃x need to be recalculated as well.
We wish to scrutinize “only” the effect of using this new

set of CFPs and gL
eff and to compare the resulting phase dia-

gram with the one in Fig. 12 in a rather simple way. To do so,
we repeated the perturbative Monte Carlo simulations, using
the same reaction-field method used above and in Ref. 20 for
a finite-size sphere of N=295 spins and a newly determined
Jex=4.38 mK. From this new set of CFPs �from Ref. 43�, gL
and Jex, a new Tc�Bx� phase diagram is derived. This phase
diagram is plotted in Fig. 14. As it can be seen, this new
phase diagram is consistent with the previous theoretical
work �e.g., Ref. 20 and Fig. 12�. Interestingly it therefore
does not appear at this time that the different crystal-field
Hamiltonians available for LiHoF4 �Refs. 16, 17, 20, and 43�
are able to explain the significant discrepancy between the
Bx-T phase diagram obtained by simulations compared to
experimental results of Ref. 13. The key point is that there is
essentially no difference between Tc�Bx� phase diagrams us-
ing the CFPs and gL of Ref. 43 provided Jex is adjusted as
well. Conversely, different CFPs and gL

eff lead to systemati-
cally different Tc�Bx� if Jex is not adjusted.

V. CONCLUSION

We used a perturbative Hamiltonian based on a low-
energy effective spin-1/2 description to reinvestigate the

Bx-T phase diagram of LiHoF4 for small Bx /Tc where quan-
tum fluctuations are weak. The method we use incorporates
perturbatively weak quantum fluctuations within a semiclas-
sical Hamiltonian. Because of its simple tractable form, the
method allowed us to address possible factors behind the
discrepancy between results from experiments and from pre-
vious quantum Monte Carlo simulations in the vicinity of Tc.
This method can be easily generalized to more complicated
quantum magnetic Ising models, where the Ising-type term is
the dominant term and the other noncommuting terms are
considered as weak perturbations. For example, the present
perturbative method could be directly applicable in studying
the effect of nonzero Bx in the diluted LiHoxY1−xF4 system.

To perform semiclassical Monte Carlo simulations that
handle the magnetostatic long-range dipole-dipole interac-
tions properly, we applied the Ewald summation technique
for two different system geometries. In order to determine
Tc, we used the Binder magnetization ratio crossing for a
long needle-shaped sample, and we used the �sph= 3

4
 crite-
rion for a spherical sample embedded inside a long needle-
shaped domain. We obtained the same Tc for both cases and,
consequently, determined the same value for Jex. The values
of the Tc and Jex that we calculated are somewhat different
from the Tc and Jex values found in Ref. 20. However, the
value of Jex that we determined agrees well with that deter-
mined in other recent Monte Carlo simulations that also em-
ploy the Ewald method.37 This difference originates from
using open boundary conditions and a finite spherical cutoff
in Ref. 20, which underestimates the thermal fluctuations on
the boundary. We found that although we used a different
method and found a different Jex, the final Bx-T phase dia-
gram obtained here is the same in the low Bx /Tc limit as in
the previous results.20 As a result, we tentatively conclude
that the discrepancy between the theoretical and experimen-
tal results is not of computational origin. To explore a pos-
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sible explanation for the discrepancy, we considered a differ-
ent set of crystal-field parameters.

A consideration of different CFPs, which leads to a dif-
ferent estimate of Jex, does not, however, at the end produce
a dramatically different Tc vs Bx phase diagram. This pre-
liminary result, with only a single set of alternative CFPs,
goes against the suggestion of Ref. 20 that a possible origin
of the discrepancy might be due to the ambiguity in CFPs. It
is perhaps surprising that the consideration of a rather differ-
ent set of CFPs compared to those used in Ref. 20 affects the
phase diagram so little once Jex has been readjusted to match
the experimental Tc�Bx=0�=1.53 K value. Therefore, the
origin of the discrepancy between numerics and experiment
remains unexplained.

The cumulant Monte Carlo method developed in the
present work could be used to carry on further investigation
of the cause of the discrepancy. Without this tool, it would
have been somewhat less straightforward investigating the
relevance of the factors we considered in this paper. The
disagreement with the experimental phase diagram of Ref.
13 would suggest that it may be worthwhile to revisit the
experimental determination of the Bx vs Tc phase diagram.
On the other hand, in both the work presented here and that
in Ref. 20, a very simple spin Hamiltonian was considered.
Specifically, only long-range magnetostatic dipole-dipole and
isotropic �Heisenberg� nearest-neighbor exchange interac-
tions were considered. The faster decreasing Tc�Bx�, com-
pared to the experimental case, seems to indicate that there
are effects at play in the real material that weaken quantum
fluctuations for small Bx, and as Bx is increased from zero. It
is quite likely that there exist other couplings in the effective
theory in addition to those in the simplest transverse-field
Ising model �TFIM� of Eq. �17�. As illustrated in Fig. 5, the
terms that we ignored when passing from Eq. �10� to Eq. �11�
seem too small to be able to resolve this issue. It might be
necessary to consider the possibility that not completely neg-
ligible anisotropic exchange, higher-order multipolar ex-
change interaction, or magnetoelastic couplings may be at
play in LiHoF4, which could influence the Tc�Bx� phase dia-
gram.

Finally, we note that it would be interesting if one could
study other magnetic materials similar to the LiHoF4 com-
pound that could provide another realization of a TFIM. Re-
cently, a mean-field theory calculation concluded that
Ho�OH�3, which is an insulating hexagonal dipolar Ising fer-
romagnet, is very well described by a TFIM when a mag-
netic field Bx is applied perpendicular to the Ising spin
direction.74 This material constitutes a close analog of
LiHoF4 and, when diamagnetically diluted with Y3+, may
potentially be an analog of LiHoxY1−xF4. The existence of
another experimental candidate for the study of the TFIM
with long-range dipolar interaction presents an opportunity
to reinvestigate the puzzling properties of pure and diluted
LiHoF4 in a new material, perhaps helping to shed some
light on the physics of dipolar Ising systems in both zero and
nonzero applied transverse fields. The method we have em-
ployed in this work is a suitable tool to study these proposed
quantum magnetic Ising materials beyond mean-field theory
and provides means to make comparison with future experi-
ments performed on these proposed TFIM materials. To con-

clude, we hope that the work presented here stimulates fur-
ther theoretical and experimental studies of LiHoF4 in the
regime of small transverse field Bx where the classical para-
magnetic to ferromagnetic transition is only perturbatively
affected by Bx.
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APPENDIX A

In this appendix, we briefly discuss how the crystal-field
Hamiltonian of LiHoF4 can be written in terms of angular
momentum operators and crystal-field parameters. In the
point-charge approximation description of the crystal field,
we assume that the ions interacting with Ho3+ electrostati-
cally are point charges. The potential at r is simply the sum
of point-charge Coulomb interaction potential,

V�r� = �
i

qi

�Ri − r�
, �A1�

where Ri is the position and the total electric charge of the
ith ion. V�r� can be expanded as

V�r,	,�� = �
n=0

�

�


rn�nZn�	,�� , �A2�

where

�n = �
i

4
q

�2n + 1�
Zn�	i,�i�

Ri
n+1 , �A3�

and the Zn are the spherical harmonics.75 To get the crystal-
field Hamiltonian Vc, one must sum this energy over all of
the valence electrons of the holmium �Ho3+� moments.
Hence we have

VC = − e�
j

V�r j� . �A4�

According to arguments provided by Stevens76 for evaluating
the matrix elements of the crystal-field Hamiltonian between
wave functions specified by the angular momentum J, the
crystal-field Hamiltonian can be written in terms of the
Stevens operator equivalents On

, built out of the vector com-
ponents of J operators,

VC = �
n,

Bn
On

. �A5�

The Stevens equivalent operators act on the angular momen-
tum states of the wave functions. The matrix element of the
radial part of the wave function is incorporated in the Bn



parameters, usually determined by fitting to experimental
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�e.g., spectroscopic� data.16,17,43 From angular momentum al-
gebra, in the case of 4f electrons, we need to consider only
n=0,2 ,4 ,6 in sum �A5�.

The choice of Bn
 coefficients in Hamiltonian �A5� that do

not vanish and have nonzero corresponding matrix elements
is dictated by the point symmetry group of the crystalline
environment. The details of the method and conventions for
expressing the crystal-field Hamiltonian can be found in the
review paper by Hutchings.75 The point-group symmetry of
LiHoF4 is S4 symmetry, which means the lattice is invariant
respect to a 


2 rotation about the z axis and reflection with
respect to the x-y plane. The crystal-field Hamiltonian for
LiHoF4 is therefore written as

VC = B2
0O2

0 + B4
0O4

0 + B4
4CO4

4C + B4
4SO4

4S + B6
0O6

0 + B6
4CO6

4C

+ B6
4SO6

4S. �A6�

The relevant operator equivalents are given in terms of an-
gular momentum operators75 �Jz, J+, J−, and J2� by

O2
0 = 3Jz

2 − J2,

O4
0 = 35Jz4 − 30J2Jz

2 + 25Jz
2 − 6J2 + 3J4,

O4
4C =

1

2
�J+

4 + J−
4� ,

O4
4S =

1

2i
�J+

4 − J−
4� ,

O6
0 = 231Jz

6 − 315J2Jz
4 + 735Jz

4 + 105J4Jz
2

− 525J2Jz
2 + 294Jz

2 − 5J6 + 40J4 − 60J2,

O6
4C =

1

4
�J+

4 + J−
4��11Jz

2 − J2 − 38� + H.c.,

and

O6
4S =

1

4i
�J+

4 − J−
4��11Jz

2 − J2 − 38� + H.c. �A7�

The Bn
 parameters are chosen such that the resulting energy

levels match those determined from spectroscopic data. Two
different sets of experimentally determined crystal-field pa-
rameters are given in Table I. The first set of the parameters
was determined by inelastic neutron scattering reported in
Ref. 16 and implemented in the calculations presented in this
work as well as in Ref. 20. The next set of Bn

 parameters
were determined from an analysis of electron paramagnetic
resonance �EPS� data43 and used in the calculations of Sec.
IV E.

APPENDIX B

In this appendix, starting from Eq. �21�, we give the de-
tails of the derivation of the effective perturbative Hamil-
tonian Heff��i� obtained from a cumulant expansion when
quantum fluctuations are small. Deriving Heff��i�, as defined

by Eq. �20�, one can rewrite the partition function of the
system in a classical form.

Referring to Eq. �21�, recalling that ��� is a direct product
of �i

z eigenstates, the expectation value ����x��� is zero, so
���H���= ���H0���. Defining E0���
���H0���, we can write
����H− ���H����n���= ����H−E0����n���.

Performing a polynomial expansion on �H−E0����n

= ��H0−E0����+H1�n and keeping terms to order O��2� in
the polynomial expansion �H1���, we have

����H − E0����n��� = �����H0 − E0���� + H1�n���

� �
n1,n2,n3

��n1 + n2 + n3,n − 2�

������H0 − E0����n1H1�H0

− E0����n2H1�H0 − E0����n3����

= ���H1�H0 − E0����n−2H1��� . �B1�

To write Eq. �B1� we have used the fact that

����H0 − E0����n��� = 0 �B2�

and

����H0 − E0����mH1�H0 − E0����k��� = 0 �B3�

for integer numbers m and k. The effect of �i
x on ��� is to flip

the spin i. We define �i
x���= �f i��, where f i� means that the

ith spin has flipped, such that if the ith spin was in the �↑ � or
the �↓ � eigenstate of �i

z, it changes into the �↓ � or �↑ � state,
respectively. In Eq. �B1�, using H1=−��i�i

x, we get

���H1�H0 − E0����n−2H1���

= �2�
i,j

����i
x�H0 − E0����n−2� j

x���

= �2�
i,j

�f i���H0 − E0����n−2�f j�� . �B4�

Here �f i���H0−E0����n−2�f j�� is zero unless i= j. Thus, Eq.
�B1� can be written as

TABLE I. The first column contains the CFPs for LiHoF4 de-
termined experimentally by fitting the results of random-phase ap-
proximation spin-wave dynamics calculation to neutron-scattering
data from Ref. 16. The second column contains the crystal-field
parameters estimated using EPR spectroscopy experiment �Ref. 43�.

Parameter Ref. 16 Ref. 43

B2
0 −0.696 K −0.609 K

B4
0 4.06�10−3 K 3.75�10−3 K

B4
4C 4.18�10−2 K 3.15�10−2 K

B4
4S 0 K 2.72�10−2 K

B6
0 4.64�10−6 K 6.05�10−6 K

B6
4C 8.12�10−4 K 6.78�10−4 K

B6
4S 1.137�10−4 K 4.14�10−4 K
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����H − E0����n��� = �2�
i

�E0�f i�� − E0����n−2. �B5�

Considering the definition of Heff, by substituting E0�f i��
−E0���=2�hi+h0��i

z into Eq. �21�, we obtain

Heff = H0 − ��2�
i

�
n�1

�
1

n!
�− 2��hi + h0��n−2

= H0 + ��2�
i

��i
zF1�2��hi + h0�� − F0�2��hi + h0��� .

�B6�

In Eq. �B6�, hi is the total local field affecting the spin at site
i by other spins, which is

hi = − �
j�i

Lij
zz� j

z − Jex�
NN

�NN
z , �B7�

and h0 is the external longitudinal field in the z direction. The
functions F0�x� and F1�x� are defined as

F0�x� =
cosh�x� − 1

x2 ,

F1�x� =
sinh�x� − x

x2 . �B8�

APPENDIX C

In this appendix, we establish the relationship between the
real thermodynamical quantities as physical observables and
their corresponding pseudo-operator representation, which
are obtained using the perturbative effective classical Hamil-
tonian in Eq. �22�. These thermodynamical quantities are cal-
culated by employing the derived pseudo-operators in our
perturbative classical Monte Carlo simulations.

Writing the partition function in terms of the perturbative
effective Hamiltonian Heff��i�, the pseudo-operators corre-
sponding to �E�, �Mz�, �Mx�, �Mz

2�, and �Mz
4�, which should

be calculated to obtain thermodynamical quantities using
Monte Carlo simulations, are written as

�E� = −
1

Z

�Z

��
= �Heff + �

�Heff

��
� , �C1�

�Mz� = �−
�Heff

�h0
� , �C2�

�Mx� = �−
�Heff

��
� , �C3�

�Mz
2� = �� �Heff

�h0
�2

−
1

�

�2Heff

�h0
2 � , �C4�

�Mz
4� =

1

�4�− �
�4Heff

�h0
4 + 4�2�3Heff

�h0
3

�Heff

�h0

− 6�3�2Heff

�h0
2 � �Heff

�h0
�2

+ 3�2� �2Heff

�h0
2 �2� �C5�

+ ��4� �Heff

�h0
�4� , �C6�

where E, Mz, and Mx are the energy and magnetization in the
z and x directions and their equivalent pseudo-operators
which should be calculated via the classical Monte Carlo
simulation are on right. The thermal average is denoted by
�¯�. Applying the derivatives and using the perturbative ef-
fective Hamiltonian �Eq. �22��, we find

E = E0 + 2��2�
i

��i
zF1�2��hi + h0�� − F0�2��hi + h0���

+ ��2�
i

2��hi + h0���i
zF1

�1��2��hi + h0��

− F0
�1��2��hi + h0��� , �C7�

while

Mx = − 2���
i

��i
zF1�2��hi + h0�� − F0�2��hi + h0���

�C8�

and

Mz = �
i

�i
z − 2�2�2�

i

��i
zF1

�1��2��hi + h0��

− F0
�1��2��hi + h0��� , �C9�

with Fi
�n��x� defined as Fi

�n�=
dnFi�x�

dxn , where i=1,0.
In order to find an expression for �Mz

2� and �Mz
4�, we need

to calculate
�Heff

�h0
,

�2Heff

�h0
2 ,

�3Heff

�h0
3 , and

�4Heff

�h0
4 . We find

�Heff

�h0
= − �

i

�i
z + 2�2�2�

i

��i
zF1

�1��2��hi + h0��

− F0
�1��2��hi + h0��� , �C10�

�2Heff

�h0
2 = 4�3�2�

i

��i
zF1

�2��2��hi + h0�� − F0
�1��2��hi + h0��� ,

�C11�

�3Heff

�h0
3 = 8�4�2�

i

��i
zF1

�3��2��hi + h0�� − F0
�3��2��hi + h0��� ,

�C12�

and

�4Heff

�h0
4 = 16�5�2�

i

��i
zF1

�4��2��hi + h0�� − F0
�4��2��hi + h0��� .

�C13�

TABEI et al. PHYSICAL REVIEW B 78, 184408 �2008�

184408-18



1 S. Sachdev, Quantum Phase Transitions �Cambridge University
Press, Cambridge, England, 1999�.

2 S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev.
Mod. Phys. 69, 315 �1997�.

3 R. J. Elliott, P. Pfeuty, and C. Wood, Phys. Rev. Lett. 25, 443
�1970�.

4 B. K. Chakrabarti, A. Dutta, and P. Sen, Quantum Ising Phases
and Transitions in Transverse Ising Models �Springer-Verlag,
Heidelberg, 1996�.

5 P. G. de Gennes, Solid State Commun. 1, 132 �1963�.
6 K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 �1986�.
7 H. G. Ballesteros, A. Cruz, L. A. Fernandez, V. Martin-Mayor, J.

Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C. L. Ullod,
and C. Ungil, Phys. Rev. B 62, 14237 �2000�.

8 H. Rieger and A. P. Young, Phys. Rev. Lett. 72, 4141 �1994�.
9 H. Rieger and A. P. Young, Phys. Rev. B 54, 3328 �1996�.

10 M. Guo, R. N. Bhatt, and D. A. Huse, Phys. Rev. B 54, 3336
�1996�.

11 R. B. Griffiths, Phys. Rev. Lett. 23, 17 �1969�.
12 B. M. McCoy, Phys. Rev. Lett. 23, 383 �1969�.
13 D. Bitko, T. F. Rosenbaum, and G. Aeppli, Phys. Rev. Lett. 77,

940 �1996�.
14 W. Wu, B. Ellman, T. F. Rosenbaum, G. Aeppli, and D. H. Reich,

Phys. Rev. Lett. 67, 2076 �1991�.
15 H. M. Rønnow, R. Parthasarathy, J. Jensen, G. Aeppli, T. F.

Rosenbaum, and D. F. McMorrow, Science 308, 389 �2005�.
16 H. M. Rønnow, J. Jensen, R. Parthasarathy, G. Aeppli, T. F.

Rosenbaum, D. F. McMorrow, and C. Kraemer, Phys. Rev. B
75, 054426 �2007�.

17 P. E. Hansen, T. Johansson, and R. Nevald, Phys. Rev. B 12,
5315 �1975�.

18 A. Chin and P. R. Eastham, arXiv:cond-mat/0610544 �unpub-
lished�.

19 S. M. A. Tabei, F. Vernay, and M. J. P. Gingras, Phys. Rev. B 77,
014432 �2008�.

20 P. B. Chakraborty, P. Henelius, H. Kjønsberg, A. W. Sandvik,
and S. M. Girvin, Phys. Rev. B 70, 144411 �2004�.

21 D. M. Silevitch, D. Bitko, J. Brooke, S. Ghosh, G. Aeppli, and T.
F. Rosenbaum, Nature �London� 448, 567 �2007�.

22 D. H. Reich, B. Ellman, J. Yang, T. F. Rosenbaum, G. Aeppli,
and D. P. Belanger, Phys. Rev. B 42, 4631 �1990�.

23 We note that the existence of a spin-glass transition in
LiHoxY1−xF4 �x=0.167� in zero transverse magnetic field has
very recently been questioned. See Ref. 24.

24 P. E. Jönsson, R. Mathieu, W. Wernsdorfer, A. Tkachuk, and B.
Barbara, Phys. Rev. Lett. 98, 256403 �2007�.

25 C. Ancona-Torres, D. M. Silevitch, G. Aeppli, and T. F. Rosen-
baum, Phys. Rev. Lett. 101, 057201 �2008�.

26 Recently, another group released a report that LiHoxY1-xF4 �x
�0.045� behaves like a rather conventional spin glass system in
contrast with the no spin glass transition scenario of Ref. 24 and
also in contrast with the antiglass proposal of Refs. 22 and 34.
�See J. A. Quilliam, S. Meng, C. G. A. Mugford, and J. B.
Kycia, Phys. Rev. Lett. 101, 187204 �2008�.

27 J. Brooke, Ph.D. thesis, University of Chicago, 2000.
28 J. A. Mydosh, Spin Glasses: An Experimental Introduction �Tay-

lor & Francis, London, 1993�.
29 W. Wu, Ph.D. thesis, University of Chicago, 1992.
30 M. Schechter and N. Laflorencie, Phys. Rev. Lett. 97, 137204

�2006�.

31 S. M. A. Tabei, M. J. P. Gingras, Y.-J. Kao, P. Stasiak, and J.-Y.
Fortin, Phys. Rev. Lett. 97, 237203 �2006�.

32 M. Schechter, P. C. E. Stamp, and N. Laflorencie, J. Phys.: Con-
dens. Matter 19, 145218 �2007�.

33 S. Ghosh, R. Parthasarathy, T. F. Rosenbaum, and G. Aeppli,
Science 296, 2195 �2002�.

34 S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith,
Nature �London� 425, 48 �2003�.

35 M. J. Stephen and A. Aharony, J. Phys. C 14, 1665 �1981�.
36 J. Snider and C. C. Yu, Phys. Rev. B 72, 214203 �2005�.
37 A. Biltmo and P. Henelius, Phys. Rev. B 76, 054423 �2007�.
38 A. Biltmo and P. Henelius, Phys. Rev. B 78, 054437 �2008�.
39 While Ref. 24 reported a lack of spin-glass transition in

LiHoxY1−xF4 for x=0.045 and x=0.165, more recent work af-
firmed that there is indeed a spin-glass transition in that material
for x=0.167 and 0.198 when Bx=0 �see Ref. 25�; Yet, an even
more recent paper by the authors of Ref. 24 reiterated that there
is no thermodynamic spin-glass transition in this material when
x�0.2 �P. E. Jönsson, R. Mathieu, W. Wernsdorfer, A. M. Tka-
chuk, and B. Barbara, arXiv:0803.1357 �unpublished��. At this
time, the experimental situation therefore appears rather contro-
versial.

40 A recent large scale Monte Carlo study finds, at variance with
Refs. 36–38, evidence for a thermodynamic spin glass transition
at nonzero temperature in a model of LiHoxY1-xF4. See K.-M.
Tam and M. J. P. Gingras, arXiv:0810.0854 �unpublished�.

41 A. W. Sandvik and J. Kurkijårvi, Phys. Rev. B 43, 5950 �1991�;
A. W. Sandvik, Phys. Rev. E 68, 056701 �2003�.

42 M. Schechter and P. C. E. Stamp, Phys. Rev. Lett. 95, 267208
�2005�.

43 G. S. Shakurov, M. V. Vanyunin, B. Z. Malkin, B. Barbara, R.
Yu. Abdulsabirov, and S. L. Korableva, Appl. Magn. Reson. 28,
251 �2005�.

44 L. N. Kantorovich and I. I. Tupitsyn, J. Phys.: Condens. Matter
11, 6159 �1999�.

45 The sum of an infinite number of dipole-dipole interactions is
conditionally convergent and depends on the order of the sum-
mation. For example, if the dipole-dipole interactions of a cen-
tral unit cell with unit cells located on an ever-increasingly long
needle-shaped sample are summed up, the energy converges to a
value different from that if the interaction energies had been
summed spherically. Roughly speaking, this conditional conver-
gence arises because the number of interacting dipoles on a shell
of radius R grows like R2, while the strength of a single dipole-
dipole interaction falls like 1 /R3, and the mathematical �n=1

� 1
n

summation diverges. The value that the sum converges to de-
pends on the shape of the boundary of the system. The effect of
the geometry of the boundary is incorporated in the Ewald sum-
mation technique. See Ref. 44.

46 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 �1946�.
47 R. Griffiths, Phys. Rev. 176, 655 �1968�.
48 J. A. Barker and R. O. Watts, Mol. Phys. 26, 789 �1973�.
49 J. M. Ziman, Principles of the Theory of Solids, 2nd ed. �Cam-

bridge University Press, Cambridge, England, 1972�.
50 M. Born and S. Huang, Dynamical Theory of Crystal Lattices

�Oxford University Press, New York, 1968�.
51 S. W. de Leeuw, J. W. Perram, and E. R. Smith, Annu. Rev.

Phys. Chem. 37, 245 �1986�.
52 For example, the Ewald summation method has proved quite

efficient to allow a characterization of the thermodynamic prop-

PERTURBATIVE QUANTUM MONTE CARLO STUDY OF… PHYSICAL REVIEW B 78, 184408 �2008�

184408-19



erties of rare-earth spin ice materials, such as Ho2Ti2O7 and
Dy2Ti2O7, and a determination of the exchange in these materi-
als. See Ref. 53 and references therein.

53 R. G. Melko and M. J. P. Gingras, J. Phys.: Condens. Matter 16,
R1277 �2004�.

54 J. Jensen and A. R. Mackintosh, Rare Earth Magnetism �Oxford
University Press, Oxford, 1991�.

55 The QMC method based on stochastic series expansion �SSE� in
Ref. 41 amounts to a numerical summation of �H to high pow-
ers, where H is the Hamiltonian and �=1 /kBT. The method we
use splits H into the classical Ising sector H0 and the quantum
transverse-field term, H1 and resums “analytically” all the terms
in �H0 and retains only the leading ��H1�2 term when evaluat-
ing thermodynamic averages.

56 G. Mennenga, L. J. de Jongh, and W. J. Huiskamp, J. Magn.
Magn. Mater. 44, 59 �1984�.

57 P. Beauvillain, J. P. Renard, I. Laursen, and P. J. Walker, Phys.
Rev. B 18, 3360 �1978�.

58 In LiHoF4 the value of the energy gap � between the ground-
state doublet and the excited state for Bx=0 strongly depends on
the crystal-field Hamiltonian. Since there is an ambiguity in the
crystal-field parameters among different experimental works,
there is also an ambiguity in the calculated energy gap. For
different estimations of � see Refs. 16, 17, and 43.

59 J. Magariño, J. Tuchendler, P. Beauvillain, and I. Laursen, Phys.
Rev. B 21, 18 �1980�.

60 L. M. Holmes, J. Als-Nielsen, and H. J. Guggenheim, Phys. Rev.
B 12, 180 �1975�.

61 We follow closely the method laid out in Ref. 62 as well as adopt
their notation. However, we provide somewhat more details to
assist the reader.

62 R. J. Creswick, H. A. Farach, J. M. Knight, and C. P. Poole, Jr.,
Phys. Rev. B 38, 4712 �1988�.

63 M. Le Bellac, Quantum and Statistical Field Theory �Oxford
University Press, New York, 1992�.

64 M. Suzuki, Prog. Theor. Phys. 46, 1337 �1971�; Quantum Monte

Carlo Methods, edited by M. Suzuki �Springer-Verlag, Heidel-
berg, 1987�.

65 H. Rieger and N. Kawashima, Eur. Phys. J. B 9, 233 �1999�.
66 A. H. Cooke, D. A. Jones, J. F. A. Silva, and M. R. Wells, J.

Phys. C 8, 4083 �1975�.
67 J. E. Battison, A. Kasten, M. J. M. Leask, J. B. Lowry, and B. M.

Wanklyn, J. Phys. C 8, 4089 �1975�.
68 J. D. Jackson, Classical Electrodynamics, 3rd ed. �Wiley, New

York, 1998�.
69 The magnetic permeability �� is usually not known beforehand.

In general as discussed in Ref. 51 it can be estimated rigorously
in a self-consistent way. In the problem that we are interested in,
we simulate an isolated sphere where the effect of the infinite
continuum surrounding is incorporated via Bz

sph defined in Eq.
�27�. We are interested in the situation where �sph=3 /4
. When
this situation is fulfilled, the long needle-shaped bulk is in the
paramagnetic regime, where in the thermodynamic limit the
macroscopic magnetization of the infinite bulk is zero. There-
fore, it seems quite reasonable to consider ��=1 for the infinite
continuum without embarking in lengthy self-consistent calcula-
tions which are beyond the scope of this paper. Furthermore, this
would appear a posteriori justified given that the simulation re-
sults are consistent with the simulation results obtained for a
long needle-shaped bulk.

70 H. J. Xu, B. Bergersen, and Z. Racz, J. Phys.: Condens. Matter
4, 2035 �1992�.

71 I. I. Tupizin and I. V. Abarenkov, Phys. Status Solidi B 82, 99
�1977�.

72 K. Binder, Z. Phys. B: Condens. Matter 43, 119 �1981�.
73 A. I. Larkin and D. E. Khmel’nitski�, Sov. Phys. JETP 29, 1123

�1969�.
74 P. Stasiak and M. J. P. Gingras, arXiv:0809.0059, Phys. Rev. B

�to be published�.
75 M. T. Hutchings, Solid State Phys. 16, 227 �1964�.
76 K. W. H. Stevens, Proc. Phys. Soc., London, Sect. A 65, 209

�1952�.

TABEI et al. PHYSICAL REVIEW B 78, 184408 �2008�

184408-20


